Barton Springs Groundwater Model Development and Application

Bill Hutchison, Ph.D., P.E., P.G. Director, Groundwater Resources Texas Water Development Board

October 15, 2009

Topics

- Background and Objective
- Summary of Model Development
- Calibration Results
- Application

BSEACD Area Models

- BEG model calibrated from 1989-1998
- BSEACD established DFCs based on "drought-of-record" (DOR -1950s)
- BSEACD expressed concern regarding calibration period of BEG model
 - Developed separate model that ostensibly covered DOR
 - Review of BSEACD model revealed that it was also not "calibrated" to DOR

Options

- Use BEG Model (despite calibration period mismatch)
- Use BSEACD Model (despite calibration issues)
- Use "Water Budget Approach" (Analytical)
- Develop "New" Model

Question

• Can BEG model be quickly and easily updated/recalibrated to cover DOR period?

Key Issues

- "Backwards" extrapolation of recharge estimates
- Extension of pumping estimates

Model Summary (MF2K)

- BAS
- DIS
- LPF
- WEL
- DRN
- HFB
- RCH

BAS

- Same IBOUND as BEG model
- Starting Head Array
 - Assigned based on early runs

DIS - Spatial

- 120 Rows x 120 Columns
- One Layer
- Cell Size = 1000 ft by 500 ft (Same as BEG)
- Top and Bottom Elevations
 - Same as BEG (with some corrections)

DIS - Temporal

- Initial Steady State Stress Period
- Monthly Stress Periods
 - January 1943 to December 2004
 - All months = 30 days
- 745 Stress Periods

LPF

- K and S Zones same as BEG
- Added anisotropy

Zone	New Model			BEG
	Kx	Ку	Kx/Ky	Kx=Ky
1	0.2	0.3	0.6	1
3	0.1	7.2	0.01	3
4	0.1	15.0	0.01	3.5
5	1.3	4.1	0.3	4.5
6	52.2	5.0	10.4	39
7	176.0	85.8	2.1	93
8	20.0	27.3	0.7	100
9	172.0	227.0	0.8	320
10	1855.9	2000.0	0.9	1236

Zono	New Model			BEG
Lone	Kx	Ky	Kx/Ky	Kx=Ky
1	0.2	0.3	0.6	1
3	0.1	7.2	0.01	3
4	0.1	15.0	0.01	3.5
5	1.3	4.1	0.3	4.5
6	52.2	5.0	10.4	39
7	176.0	85.8	2.1	93
8	20.0	27.3	0.7	100
9	172.0	227.0	0.8	320
10	1855.9	2000.0	0.9	1236

Zone	New Model			BEG
	Kx	Ку	Kx/Ky	Kx=Ky
1	0.2	0.3	0.6	1
3	0.1	7.2	0.01	3
4	0.1	15.0	0.01	3.5
5	1.3	4.1	0.3	4.5
6	52.2	5.0	10.4	39
7	176.0	85.8	2.1	93
8	20.0	27.3	0.7	100
9	172.0	227.0	0.8	320
10	1855.9	2000.0	0.9	1236

Zone	New Model			BEG
	Kx	Ку	Kx/Ky	Kx=Ky
1	0.2	0.3	0.6	1
3	0.1	7.2	0.01	3
4	0.1	15.0	0.01	3.5
5	1.3	4.1	0.3	4.5
6	52.2	5.0	10.4	39
7	176.0	85.8	2.1	93
8	20.0	27.3	0.7	100
9	172.0	227.0	0.8	320
10	1855.9	2000.0	0.9	1236

Storativity and Specific Yield

Zono	New Model		
Zone	Ss	Sy	
1	1.72E-05	7.56E-02	
3	7.16E-05	2.00E-01	
4	3.22E-06	1.47E-03	
5	1.33E-05	7.45E-03	
6	2.19E-07	1.73E-02	
7	1.12E-05	1.93E-03	
8	1.66E-04	6.79E-02	
9	8.74E-08	7.44E-04	
10	1.15E-03	1.73E-01	

S_s in ft-1

S_y dimensionless

WEL

- BEG/BSEACD Estimates
- "Rural" vs. "Point" Pumping

Monthly Pumping

Annual Pumping

Monthly Pumping (BSEACD Estimates)

Monthly Pumping (BSEACD Estimates)

Annual Pumping

1943-1988, 1999-2004 Extrapolation

- Use BSEACD estimated pumping totals
- Distribute based on "rural" and "point" distribution
- Use BEG spatial distribution based on month

"Point" Wells (BEG Model) Total "Wells" =7,037

Percent "Rural" Pumping

"Rural" vs. "Point"

- 12 Months
- 12 Regression Equations

– Year and Precipitation independent variables

June

Calibration Adjustments

- Adjust by decade (40s to 00s)
 - 7 "decades"
- Adjust by K&S zone
 - 9 zones

Decadal Adjustment

Zone Adjustment

DRN

- Barton Springs
- Cold Springs
- Calibration Parameter: Conductance

HFB

• Same location and conductance as BEG
RCH

- Extrapolation based on BEG model
 - 7 zones
 - 12 months
 - 84 Regression Relationships
- Adjusted during calibration

7 Recharge "Zones"

Precipitation Index

- Average of San Marcos and Austin Airport
- Current Month + $\frac{1}{2}$ Month(-1) + $\frac{1}{4}$ Month(-2)

Recharge Comparison

Recharge Comparison

Calibration Parameters

- Adjust maximum recharge (by zone)
- Wet year adjustment (by month)
- Dry year adjustment (by month)
- Decadal adjustment (by decade)

Maximum Recharge

Zone	Max Recharge Rate (ft/day)
2	2.00E-03
3	2.00E-01
4	5.00E-02
5	1.97E-01
6	6.26E-02
7	3.01E-02
8	1.80E-01

Dry Year Factors

Month	Dry Threshold	Factor
1	4	0.143
2	4	0.1
3	4	0.1
4	5	0.1
5	4	0.1
6	6	0.1
7	4	0.1
8	4	0.1
9	4	0.1
10	7	0.1
11	6	0.1
12	5	0.1

Wet Year Factors

Month	Wet Threshold	Factor
1	6	9.5
2	7	0.7
3	8	0.7
4	6	6.7
5	9	6.5
6	8	0.7
7	7	4.5
8	6	9
9	8	10.5
10	7	8.5
11	9	10.5
12	9	2.5

Decadal Factors

Decade	Factor
1943 - 1950	0.50
1951 - 1960	0.65
1961 - 1970	0.99
1971 - 1980	1.10
1981 - 1990	1.13
1991 - 2000	1.14
2001 - 2004	1.15

Decadal Recharge Factors

Precipitation vs. Recharge

Monthly Recharge

Annual Recharge

Calibration Targets

- 153 Wells
- 2246 Head Measurements
- 744 Barton Spring Flow "Measurements"

Calibration Summary

		BEG
	New Model	Model
Simulation Period	1943-2004	1989-1998
Number of Stress Periods	744	120
Error of Head Drop Across Model	7%	10-22%*

*March/April 1994 July/Aug 1996 July/Aug 1998

Measured vs. Simulated Heads

Measured vs. Simulated Heads

Measured vs. Simulated Heads (minus 5849309, 5857201, 5850103)

Range	464	409
Standard Deviation of Residuals	44.69	42.43
Standard Deviation/Range	0.096	0.104

Range	464	409
Standard Deviation of Residuals	44.69	42.43
Standard Deviation/Range	0.096	0.104

Standard < 0.10

Barton Springs

Barton Springs

Measured vs. Simulated Springflow

Calibration Statistics

Barton Springs

Range (cfs)	134
Standard Deviation of Residuals	16.86
Standard Deviation/Range	0.126

Groundwater Budget

- Monthly
 - Recharge, Pumping, Spring Flow
 - Storage Change
 - Cumulative Storage Change
 - Cross Plots
- Annual

Monthly Storage Change

Cumulative Storage Change

Cross Plots

- Changes in Spring Flow
 - Pumping
 - Recharge
- Changes in Storage
 - Pumping
 - Recharge

Pumping vs. Spring Flow

Recharge vs. Spring Flow

Pumping vs. Storage Change

Recharge vs. Storage Change

Groundwater Budget

- Monthly
- Annual
 - Recharge
 - Pumping
 - Spring Flow
 - Storage Change
 - Cross Plots

Annual Recharge

Annual Pumping

Annual Spring Flow

Annual Storage Change

Cross Plots

- Pumping Impacts on
 - Spring Flow
 - Storage Change
- Recharge Impacts on
 - Spring Flow
 - Storage Change

Pumping vs. Spring Flow

Pumping vs. Storage Change

Recharge vs. Spring Flow

Recharge vs. Storage Change

Groundwater Budget Summary

- Recharge vs. Storage Change

 Monthly and Annual
- Recharge vs. Spring Flow
 - Annual
- Pumping impacts less significant

Model Application

- DFC based on spring flow under drought conditions
- "Traditional" approach
 - 50 year run with 7 yr DOR as last 7 years
- "Variation" approach
 - Multiple 7-year simulations

Extending Historic Record

- University of Arkansas study (GBRA)
- Tree ring Record: 1648 1995

342 Recharge Scenarios

• 7-year scenarios 1648 to 1654 South Central Texas Region 1649 to 1655 Precipitation (% Average) • 1989 to 1995 Year

Variations on Recharge Scenarios

- Initial conditions
 - Low (1957)
 - Intermediate (2004)
 - High (1992)
- Pumping
 - 5 scenarios (3,800 to 16,300 AF/yr)
 - Current Pumping ~ 5,500 AF/yr

Cumulative Storage Change

Cumulative Storage Change

Cumulative Storage Change

Cumulative Storage Change

Summary of Simulations

- 15 Scenarios
 - 3 Initial Conditions
 - 5 Pumping
- Each scenario = 342 7-year simulations
 - 28,728 months
- Initially 5,130 7-year simulations

Results

- 28,728 months
- Impacts of recharge on spring flow
- Impacts of pumping on spring flow

Intermediate Starting Heads

Low Starting Heads

High Starting Heads

Intermediate Starting Heads

Low Starting Heads

Cumulative Storage Change

Summary

- Current pumping is relatively low compared to flow in system
- Relative impacts on spring flow
 - Initial Conditions
 - Recharge
 - Pumping
- Pumping assumed to be constant

Pumping Reduction During Drought

- Assumed low initial conditions
- Assumed 6,800 AF/yr pumping
- Drought Threshold
 - 5%
 - 10%
- Pumping Reduction

- 50%
- 75%

High Starting Heads

Intermediate Starting Heads

Low Starting Heads

Pumping Reduction Impacts During Drought Assumes Drought = 5% Recurrence, Pumping = 6,800 AF/yr

Summary

- New model better able to simulate drought conditions
- Tool to investigate spring flow impacts
 - Drought
 - Initial conditions
 - Annual pumping
 - Pumping reductions during drought

Desired Future Condition

- Policy decision/choice
- Minimum spring flow
 - Initial condition assumption?
 - 100% achievement?
 - 95% achievement?
 - 90% achievement?